Mon-Fri 9am to 6pm CST

From 0 to 1: Spark for Data Science with Python
Self-Paced
Learning Style
Course
Learning Style
Intermediate
Difficulty
8 Hours
Course Duration
Course Info
Certificate
You have already taken demo for this course.
If you want to get access to demo again, feel free to contact our support at (855) 800-8240
Course Information
Get your data to fly using Spark for analytics, machine learning and data science
Let’s parse that.
What's Spark? If you are an analyst or a data scientist, you're used to having multiple systems for working with data. SQL, Python, R, Java, etc. With Spark, you have a single engine where you can explore and play with large amounts of data, run machine learning algorithms and then use the same system to productionize your code.
Analytics: Using Spark and Python you can analyze and explore your data in an interactive environment with fast feedback. The course will show how to leverage the power of RDDs and Dataframes to manipulate data with ease.
Machine Learning and Data Science : Spark's core functionality and built-in libraries make it easy to implement complex algorithms like Recommendations with very few lines of code. We'll cover a variety of datasets and algorithms including PageRank, MapReduce and Graph datasets.
Course Objective:
- Music Recommendations using Alternating Least Squares and the Audioscrobbler dataset
- Dataframes and Spark SQL to work with Twitter data
- Using the PageRank algorithm with Google web graph dataset
- Using Spark Streaming for stream processing
- Working with graph data using the Marvel Social network dataset
Audience:
- Analysts who want to leverage Spark for analyzing interesting datasets
- Data Scientists who want a single engine for analyzing and modelling data as well as productionizing it.
- Engineers who want to use a distributed computing engine for batch or stream processing or both
Prerequisite:
- The course assumes knowledge of Python. You can write Python code directly in the PySpark shell. If you already have IPython Notebook installed, we'll show you how to configure it for Spark
- For the Java section, we assume basic knowledge of Java. An IDE which supports Maven, like IntelliJ IDEA/Eclipse would be helpful
- All examples work with or without Hadoop. If you would like to use Spark with Hadoop, you'll need to have Hadoop installed (either in pseudo-distributed or cluster mode).
Career & Salary Insight
Outline
More Information
Subjects | Big Data |
---|---|
Lab Access | No |
Learning Style | Self-Paced Learning |
Learning Type | Course |
Difficulty | Intermediate |
Course Duration | 8 Hours |
Language | English |
Acclaim Badge
Reviews

Tom Robertson
(Data Science Enthusiast)
Tom is an innovator first, and then a Data Scientist & Software Architect. He has integrated expertise in business, product, technology and management. Tom has been involved in creating category defining new products in AI and big data for different industries, which generated more than hundred million revenue cumulatively, and served more than 10 million users.
As a Data Scientist and Software Architect Tom has extensive experience in data science, engineering, architecture and software development. To date Tom has accumulated over a decade of experience in R, Python & Linux Shell programming.
Tom has expertise on Python, SQL, and Spark. He has worked on several libraries including but not limited to Scikit-learn, Pandas, NumPy, Matplotlib, Seaborn, SciPy, NLTK, Keras, and Tensorflow.
Learn Subscription Includes:
Sign up for your FREE TRIAL, And Explore Hundreds Of Courses.
-
Really interesting trainningReally interesting trainning
Posted on