QUICKSTART

Over 35 Years Of Technology Training

Document Generated: 01/19/2026
Learning Style: Virtual Classroom
Technology:

Difficulty: Beginner

Course Duration: 3 Days

Next Course Date: February 17, 2026

Test Driven Development (TDD) and Unit Testing
Essentials (TT3503)

About This Course:

Test Driven Development (TDD) and Unit Testing Essentials is a three-day,
comprehensive hands-on test-driven development / JUnit / TDD training course

Page 1/7 https://www.quickstart.com/test-driven-development-tdd-and-unit-testing-essentials-tt3503.html

geared for developers who need to get up and running with essential Test-driven
development programming skills using JUnit and various open-source testing
frameworks. Throughout the course you'll learn, explore and gain practical
experience working with best practices for writing great programs in Java, using test-
driven development techniques. This course quickly introduces you to the core
features and benefits of JUnit. You'll leave this course armed with the skills required
to leverage solid test driven development and unit testing techniques, using the
latest industry techniques and best practices.

Throughout the course, you will work on a project with labs specifically oriented

towards using TDD to implement a complex and multi-faceted web application that
uses a database in its final form.

Course Objectives:

Working in a hands-on learning environment, guided by our expert team, you'll
explore:

¢ The role of Unit Testing in software development and testing
e How to write effective Unit Testing

¢ The properties of effective unit tests

¢ The benefits of the test-first and Test-Driven Development

e Techniques and practices to aid in the successful adoption of Test-Driven
Development

¢ JUnit and the JUnit Test Runner interface.
e How to use JUnit to drive the implementation of Java code.
¢ The role of debugging when done in conjunction with tests.

¢ The fundamentals of the TDD using Java, as well as its importance, uses,
strengths and weaknesses.

¢ Understand how JUnit affects your perspective on development and
increases your focus on a task.

e Good JUnit coding style.

e How to Create well-structured JUnit programs.

¢ How to Compile and execute programs using JUnit and DBUnit
e How to extend testing with mock objects using Mockito.

¢ Refactoring techniques available to make code as reusable/robust as

Page 2/7 https://www.quickstart.com/test-driven-development-tdd-and-unit-testing-essentials-tt3503.html

possible.

¢ Various testing techniques.

Audience:
¢ This programming course is for students with hands-on Java development
experience. Attending titles may include Software Developers and
Programmers, Agile Practitioners, Quality Assurance Professionals,

Software Testers, Product Owners, Project Managers, IT Managers or
Software Engineers.

Prerequisites:

Take Before: Students should have development skills at least equivalent to the
following course(s) or should have attended as a pre-requisite:

e TT2104 Core Java Programming for OO Experienced Developers — 4 days

Course Outline:
Session: Introducing Test-driven Development
Lesson: Test-Driven Development

¢ Rationale for TDD

The process of TDD

Advantages to TDD

Side-effects of TDD

Tools to support TDD

Tutorial: Setup IntelliJ for Using Maven

Session: Unit Testing using JUnit
Lesson: Unit Testing Fundamentals

e Purpose of Unit Testing

Page 3/7 https://www.quickstart.com/test-driven-development-tdd-and-unit-testing-essentials-tt3503.html

Good Unit Tests

Test Stages

Unit Testing Vs Integration Testing

Understanding Unit Testing Frameworks

Lesson: Jumpstart: JUnit 5.x
e Understand and work with the features of JUnit
e Write unit tests using @ Test annotation
e Test Result Verification (Assertions)

e Manage fixtures using @BeforeEach, @AfterEach, @BeforeAll and
@AfterAll annotations

e Maven setup using Surefire plugin
e Lab: Demo JUnit
e Lab: Build JUnit Case Study

e Lab: Jumpstart JUnit

Lesson: Annotations

Use @DisplayName to specify a custom name for the test

Check for exceptions thrown by test

Use @Disabled to prevent a test class or method from running

Use timeouts to fail test that take longer than required

Test Execution Order

Lab: Working with @Test Annotation

Lesson: Hamcrest
¢ [earn the notation of assertThat

¢ Know the objective of Hamcrest library

Page 4/7 https://www.quickstart.com/test-driven-development-tdd-and-unit-testing-essentials-tt3503.html

¢ Use Hamcrest's logical and object matchers
e Use Hamcrest's number and collection matchers

e Lab: Working with Hamcrest

Lesson: Parameterized Tests

The @ParameterizedTest annotation

A parameterized test to test code under several conditions

Define different sources for test data (@ValueSource, @CsvSource,
@CsvFileSource,@EnumSource, @MethodSource, @ArgumentSource)

Lab: Working with Parameterized Tests

Lesson: Advanced Features

JUnit 4 vs JUnit 5

Nested Unit Tests

Repeated Tests

JUnit Extensions

ExecutionConditions

Lambda Support

Grouped Assertions

Lab: Working with Advanced Features

Lesson: JUnit Best Practices

e "Good" Tests

Bad Smell

White-Box Unit Testing

Black-Box Unit Testing

Automation and Coverage

Page 5/7 https://www.quickstart.com/test-driven-development-tdd-and-unit-testing-essentials-tt3503.html

Session: Mocking
Lesson: Mocking of Components
¢ Why We use Test Dummies
¢ Working with Mock Objects
¢ Using Mocks with the User Interface

¢ Mock Object Strategies

Lesson: Mock Objects and Mockito

e Mockito Description and Features

Mockito Object Lifecycle

JUnit 5 and Mockito Dependency Injection

Stubs Using ArgumentMatchers

Verifying Behavior in Mockito

Partial Mock Objects

The Spy annotation

Lab: Mock Object and Mockito

Lesson: PowerMock

PowerMock Description and Features

Using PowerMockito

@PrepareForTest

Mocking a final class or final method

Mocking a Static Method

Session: Advanced Topics
Lesson: State-based vs. Interaction-based Testing

e State-based Testing

Page 6/7 https://www.quickstart.com/test-driven-development-tdd-and-unit-testing-essentials-tt3503.html

Interaction-based Testing

Mock Objects Support Each Approach

Three Areas to Check in a Test

Lab: Interaction-based Testing

Lesson: Improving Code Quality Through Refactoring

Refactoring Overview

Refactoring and Testing

Refactoring to Design Patterns

Lab: Refactoring

Lab: Best Practices - Refactoring Tests

Lesson: Database Testing: DbUnit
e Setting up DbUnit
¢ Defining a Dataset File in XML, CSV or Excel
¢ Writing a DbUnit Test Class
¢ Assert the results
¢ Use the FailureHandler and ValueComparer
e Using Date and Time in test sets
e Export a data set
e Lab: Introduction to DbUnit
¢ Lab: DbUnit Assertions

¢ Lab: Selenium and DbUnit

Page 7/7 https://www.quickstart.com/test-driven-development-tdd-and-unit-testing-essentials-tt3503.html

http://www.tcpdf.org

