
 Document Generated: 01/19/2026

Learning Style: Virtual Classroom

Technology: 

Difficulty: Beginner

Course Duration: 3 Days

Next Course Date: February 17, 2026

Test Driven Development (TDD) and Unit Testing
Essentials (TT3503)

 

About This Course:

Test Driven Development (TDD) and Unit Testing Essentials is a three-day,
comprehensive hands-on test-driven development / JUnit / TDD training course

Page 1/7 https://www.quickstart.com/test-driven-development-tdd-and-unit-testing-essentials-tt3503.html



geared for developers who need to get up and running with essential Test-driven
development programming skills using JUnit and various open-source testing
frameworks. Throughout the course you'll learn, explore and gain practical
experience working with best practices for writing great programs in Java, using test-
driven development techniques. This course quickly introduces you to the core
features and benefits of JUnit. You'll leave this course armed with the skills required
to leverage solid test driven development and unit testing techniques, using the
latest industry techniques and best practices.

Throughout the course, you will work on a project with labs specifically oriented
towards using TDD to implement a complex and multi-faceted web application that
uses a database in its final form.

Course Objectives:

Working in a hands-on learning environment, guided by our expert team, you'll
explore:

The role of Unit Testing in software development and testing

How to write effective Unit Testing

The properties of effective unit tests

The benefits of the test-first and Test-Driven Development

Techniques and practices to aid in the successful adoption of Test-Driven
Development

JUnit and the JUnit Test Runner interface.

How to use JUnit to drive the implementation of Java code.

The role of debugging when done in conjunction with tests.

The fundamentals of the TDD using Java, as well as its importance, uses,
strengths and weaknesses.

Understand how JUnit affects your perspective on development and
increases your focus on a task.

Good JUnit coding style.

How to Create well-structured JUnit programs.

How to Compile and execute programs using JUnit and DBUnit

How to extend testing with mock objects using Mockito.

Refactoring techniques available to make code as reusable/robust as

Page 2/7 https://www.quickstart.com/test-driven-development-tdd-and-unit-testing-essentials-tt3503.html



possible.

Various testing techniques.

Audience:

This programming course is for students with hands-on Java development
experience. Attending titles may include Software Developers and
Programmers, Agile Practitioners, Quality Assurance Professionals,
Software Testers, Product Owners, Project Managers, IT Managers or
Software Engineers.

Prerequisites:

Take Before: Students should have development skills at least equivalent to the
following course(s) or should have attended as a pre-requisite:

TT2104 Core Java Programming for OO Experienced Developers – 4 days

 

Course Outline:

Session: Introducing Test-driven Development

Lesson: Test-Driven Development

Rationale for TDD

The process of TDD

Advantages to TDD

Side-effects of TDD

Tools to support TDD

Tutorial: Setup IntelliJ for Using Maven

Session: Unit Testing using JUnit

Lesson: Unit Testing Fundamentals

Purpose of Unit Testing

Page 3/7 https://www.quickstart.com/test-driven-development-tdd-and-unit-testing-essentials-tt3503.html



Good Unit Tests

Test Stages

Unit Testing Vs Integration Testing

Understanding Unit Testing Frameworks

Lesson: Jumpstart: JUnit 5.x

Understand and work with the features of JUnit

Write unit tests using @Test annotation

Test Result Verification (Assertions)

Manage fixtures using @BeforeEach, @AfterEach, @BeforeAll and
@AfterAll annotations

Maven setup using Surefire plugin

Lab: Demo JUnit

Lab: Build JUnit Case Study

Lab: Jumpstart JUnit

Lesson: Annotations

Use @DisplayName to specify a custom name for the test

Check for exceptions thrown by test

Use @Disabled to prevent a test class or method from running

Use timeouts to fail test that take longer than required

Test Execution Order

Lab: Working with @Test Annotation

Lesson: Hamcrest

Learn the notation of assertThat

Know the objective of Hamcrest library

Page 4/7 https://www.quickstart.com/test-driven-development-tdd-and-unit-testing-essentials-tt3503.html



Use Hamcrest's logical and object matchers

Use Hamcrest's number and collection matchers

Lab: Working with Hamcrest

Lesson: Parameterized Tests

The @ParameterizedTest annotation

A parameterized test to test code under several conditions

Define different sources for test data (@ValueSource, @CsvSource,
@CsvFileSource,@EnumSource, @MethodSource, @ArgumentSource)

Lab: Working with Parameterized Tests

Lesson: Advanced Features

JUnit 4 vs JUnit 5

Nested Unit Tests

Repeated Tests

JUnit Extensions

ExecutionConditions

Lambda Support

Grouped Assertions

Lab: Working with Advanced Features

Lesson: JUnit Best Practices

"Good" Tests

Bad Smell

White-Box Unit Testing

Black-Box Unit Testing

Automation and Coverage

Page 5/7 https://www.quickstart.com/test-driven-development-tdd-and-unit-testing-essentials-tt3503.html



Session: Mocking

Lesson: Mocking of Components

Why We use Test Dummies

Working with Mock Objects

Using Mocks with the User Interface

Mock Object Strategies

Lesson: Mock Objects and Mockito

Mockito Description and Features

Mockito Object Lifecycle

JUnit 5 and Mockito Dependency Injection

Stubs Using ArgumentMatchers

Verifying Behavior in Mockito

Partial Mock Objects

The Spy annotation

Lab: Mock Object and Mockito

Lesson: PowerMock

PowerMock Description and Features

Using PowerMockito

@PrepareForTest

Mocking a final class or final method

Mocking a Static Method

Session: Advanced Topics

Lesson: State-based vs. Interaction-based Testing

State-based Testing

Page 6/7 https://www.quickstart.com/test-driven-development-tdd-and-unit-testing-essentials-tt3503.html



Interaction-based Testing

Mock Objects Support Each Approach

Three Areas to Check in a Test

Lab: Interaction-based Testing

Lesson: Improving Code Quality Through Refactoring

Refactoring Overview

Refactoring and Testing

Refactoring to Design Patterns

Lab: Refactoring

Lab: Best Practices - Refactoring Tests

Lesson: Database Testing: DbUnit

Setting up DbUnit

Defining a Dataset File in XML, CSV or Excel

Writing a DbUnit Test Class

Assert the results

Use the FailureHandler and ValueComparer

Using Date and Time in test sets

Export a data set

Lab: Introduction to DbUnit

Lab: DbUnit Assertions

Lab: Selenium and DbUnit

Powered by TCPDF (www.tcpdf.org)

Page 7/7 https://www.quickstart.com/test-driven-development-tdd-and-unit-testing-essentials-tt3503.html

http://www.tcpdf.org

