
 Document Generated: 01/19/2026

Learning Style: Virtual Classroom

Technology:

Difficulty: Intermediate

Course Duration: 3 Days

Next Course Date: February 23, 2026

Server-Driven Web Apps with htmx: the HTML-First
Approach (TT4005)

About This Course:

Build modern, interactive web applications without writing JavaScript. This course
teaches you to create dynamic, server-driven interfaces using htmx, a lightweight

Page 1/7 https://www.quickstart.com/server-driven-web-apps-with-htmx-the-html-first-approach-tt4005.html

library that extends HTML with powerful attributes for AJAX, WebSockets, and real-
time updates. You'll learn to build responsive UIs that rival single-page applications,
but with dramatically simpler architecture and better SEO.

Master progressive enhancement, hypermedia-driven design, and server-side
rendering patterns. Create interactivity such as auto-updating dashboards, infinite
scroll feeds, modal dialogs, form validation, and live search without complex
JavaScript frameworks. You'll work with Python/Flask backends to build
applications that are faster to develop, easier to maintain, and more accessible than
React or Vue equivalents.

Find out when htmx excels (content-heavy sites, admin dashboards, CRUD
applications) and when traditional SPAs might be better. Build real-world projects.

Course Objectives:

Evaluate use cases where htmx provides advantages over JavaScript
frameworks, including faster development cycles, improved SEO, reduced
complexity, and better accessibility

Implement core htmx functionality using attributes like hx-get, hx-post, hx-
target, hx-swap, and hx-trigger to create interactive web interfaces

Build dynamic forms with real-time validation, loading indicators, error
handling, and server-side integration

Create server endpoints in Python/Flask that return HTML fragments for
partial page updates

Implement real-time features using polling, server-sent events, and trigger-
based updates for live dashboards and notifications

Build single-page application experiences using hx-boost, hx-push-url, and
browser history management

Manage application state and data flow between client and server using hx-
vals, hx-params, and htmx event hooks

Deploy production-ready htmx applications with optimized performance,
accessibility, and SEO

Design architectures that maximize the benefits of hypermedia-driven
development while understanding its trade-offs

Audience:

Backend developers who want to add modern interactivity without learning
heavy JavaScript frameworks

Page 2/7 https://www.quickstart.com/server-driven-web-apps-with-htmx-the-html-first-approach-tt4005.html

Full-stack developers seeking simpler alternatives to React/Vue/Angular for
dynamic UIs

Python/Django/Flask developers building interactive admin interfaces and
dashboards

Frontend developers interested in server-driven architecture and
progressive enhancement

Teams looking to reduce frontend complexity, maintenance burden, and
build times

Developers building content-heavy sites where SEO and accessibility are
critical priorities

Prerequisites:

Students should have solid HTML and CSS skills. Understanding of HTTP
fundamental concepts (requests, responses, status codes) and familiarity
with basic web development concepts like forms, the DOM, and client-
server architecture is helpful.

Course Outline:

1) What htmx is and Setup

Understand the philosophy behind htmx and get your development environment
ready. Learn why hypermedia-driven applications are making a comeback and
when htmx is the right choice for your project.

The origins of htmx and Intercooler.js
REST and HATEOAS principles
The role of hypermedia in frontend architecture
Comparison to JavaScript-heavy approaches
Use cases where htmx excels
Project structure and HTML setup
CDN vs npm installation
Setting up a local server and dev tools
Testing the htmx script load

Set up an HTML page with htmx loaded via CDN, create a simple Flask endpoint.

2) Core htmx Attributes & Patterns

Master the fundamental building blocks of htmx—the attributes that transform static

Page 3/7 https://www.quickstart.com/server-driven-web-apps-with-htmx-the-html-first-approach-tt4005.html

HTML into interactive applications without writing JavaScript.

hx-get, hx-post, hx-put, hx-delete
hx-target, hx-trigger, and hx-include
hx-swap and swap modes (innerHTML, outerHTML, afterbegin, etc.)
Creating backend endpoints
HTTP method overrides and safety
Working with hidden inputs and CSRF tokens
Real-time updates with polling and triggers
Inspecting requests and responses with dev tools
Debugging common issues
Accessibility considerations

Build an interactive todo list with add, delete, and mark-complete functionality.

3) Backend Integration

Learn to create server endpoints that work seamlessly with htmx, with deep focus
on Python/Flask patterns that transfer to other backends.

Python: Flask (light endpoints), Django (forms/templates), CSRF

Build a complete contact form system with Flask backend.

4) Forms and Validation

Master form handling in htmx—from simple submissions to complex multi-step
workflows with real-time validation and elegant user feedback.

Form event lifecycle in htmx
hx-indicator and spinners
Error messaging and status elements
HTML5 validation and custom server responses
Integrating with backend form validators

Create a multi-field user registration form with real-time validation.

5) DOM Manipulation & Conditional Rendering

Control what users see and when they see it, using server logic to drive UI changes
dynamically without client-side JavaScript.

Inline conditionals using server logic
DOM fragment targeting
Lazy loading with hx-trigger on scroll
Content refresh without user input

Page 4/7 https://www.quickstart.com/server-driven-web-apps-with-htmx-the-html-first-approach-tt4005.html

Build an infinite-scroll news feed that lazy-loads articles as users scroll down.

6) State and Data Flow

Manage application state and coordinate data between client and server in
the htmx paradigm where the server is the source of truth.

hx-vals, hx-params, and passing state
Simulating data binding with dynamic values
Triggering updates on input change, focus, blur, or custom events
htmx event hooks: htmx:beforeSend, etc.
Context-aware updates
Keeping UI in sync with backend data changes
Linking components without JavaScript routing

Build a shopping cart system.

7) Performance and Testing

Optimize htmx applications for speed and reliability, and implement comprehensive
testing strategies to ensure quality.

Optimize htmx applications for speed and reliability
Implement comprehensive testing strategies to ensure quality.
Lazy loading content and images
Server-side performance tips
Testing HTML responses
Debugging with dev tools and htmx events

Take the todo app and optimize it. Write backend unit tests for all endpoints.

8) Building SPAs with htmx

Create single-page application experiences that provide smooth navigation and
instant updates without the complexity of traditional SPA frameworks.

The importance of an SPA
Page transitions with hx-boost
Using hx-push-url for history tracking
Partial loading patterns
SPA vs MPA tradeoffs
Linking views together with state

Convert a traditional multi-page blog application into an SPA experience.

9) Deployment and Best Practices

Page 5/7 https://www.quickstart.com/server-driven-web-apps-with-htmx-the-html-first-approach-tt4005.html

Take your htmx application to production with confidence, following industry best
practices for performance, security, and maintainability.

Hosting options (Vercel, Netlify, Heroku)
SEO optimization with server-rendered pages
Accessibility and semantic HTML
Performance audits
Bundling and minification tips

Deploy your htmx application to a hosting platform of choice (Heroku or Railway for
example).

10) Optional: End-to-End Testing

Implement comprehensive end-to-end testing for htmx applications using Playwright
to ensure reliability and catch bugs before production.

Using Playwright for E2E Testing with htmx

Add Playwright tests to the todo app that verify: adding a todo, deleting a todo,
marking complete, and form validation.

11) Optional: UI/UX and Animations

Polish your htmx applications with smooth transitions and professional feedback
patterns that make server-driven UIs feel responsive and modern.

Using CSS transitions with hx-swap and partial updates
Leveraging hx-indicator for loading animations
Animating content appearance with opacity, scale, and slide-in effects
Delaying or staging swaps for animation timing
Integrating with animation libraries like Animate.css
Enhancing user feedback with class toggles and conditional states
Best practices for accessible and non-distracting animations

Enhance the todo app from earlier with animations

12) Optional: Custom Extensions and Alpine.js Integration

Extend htmx's capabilities for edge cases and add lightweight client-side logic when
server-driven patterns aren't enough.

htmx.config and customizing behavior
Registering an extension
Overriding request/response handling
Using Alpine.js for client-side state
Lightweight two-way interaction

Page 6/7 https://www.quickstart.com/server-driven-web-apps-with-htmx-the-html-first-approach-tt4005.html

Integrating third-party JavaScript modules

Create a modal dialog system using Alpine.js for open/close state management.

Powered by TCPDF (www.tcpdf.org)

Page 7/7 https://www.quickstart.com/server-driven-web-apps-with-htmx-the-html-first-approach-tt4005.html

http://www.tcpdf.org

