
 Document Generated: 01/07/2026

Learning Style: Virtual Classroom

Technology: 

Difficulty: Intermediate

Course Duration: 5 Days

Hands-on Rust Programming for Python
Developers (TTRS2100)

 

About This Course:

Rust is a modern programming language designed for performance and safety,
particularly in concurrent systems, offering a unique combination of efficiency and
reliability. Learning Rust equips you with the ability to write high-performance, bug-

Page 1/9 https://www.quickstart.com/hands-on-rust-programming-for-python-developers-ttrs2100.html



free code, greatly enhancing your programming toolkit.

Geared for Python experienced developers, this five-day Rust programming course
is designed to help you transition from Python to Rust with confidence. Led by an
expert trainer, the course combines engaging lectures with hands-on labs, ensuring
you grasp Rust's unique features and gain practical experience. You'll explore
Rust's syntax, control flow, and module imports, and move on to advanced topics
like memory management, concurrency, and pattern matching. By leveraging
Cargo, you'll streamline project management and integrate popular crates like
Serde for serialization, Tokio for asynchronous programming, and SQLx for
database interactions, enabling you to build robust, scalable applications.

The workshop-style format dedicates half of the class time to hands-on labs,
applying what you've learned in real-world scenarios. You'll gain expertise in writing
concurrent programs using Rust's powerful tools, such as threads, Mutex, RwLock,
and async/await, ensuring your applications handle multiple tasks efficiently. You'll
also master pattern matching, creating readable and maintainable code. By the end
of the course, you'll be confident in writing comprehensive tests and documentation,
making you a highly effective programmer ready to tackle complex Rust projects
and advance your career.

Course Objectives:

Master Rust Syntax and Semantics: Get comfortable writing and
understanding Rust code, including how to use control flow, functions, and
module imports.

Implement Memory Management: Learn to manage memory effectively in
Rust by mastering concepts like ownership, borrowing, and lifetimes to
ensure your code is both safe and efficient.

Leverage Cargo and Crates: Become adept at using Cargo to manage Rust
projects and dependencies, and explore how to integrate popular crates like
Serde, Tokio, and SQLx to add powerful features to your applications.

Utilize Rust's Concurrency Model: Discover how to write efficient and
concurrent programs using Rust's concurrency tools, such as threads,
Mutex, RwLock, and async/await.

Employ Pattern Matching and Generics: Understand and apply pattern
matching with enums and functions, and use generics to create flexible and
reusable code.

Create and Test Rust Applications: Develop complete Rust applications,
including writing tests with Rust's testing framework and generating clear,
comprehensive documentation using Rustdoc.

Audience:

Page 2/9 https://www.quickstart.com/hands-on-rust-programming-for-python-developers-ttrs2100.html



This course is designed for Python developers looking to expand their
programming skills with Rust. It is ideal for software engineers, system
programmers, and developers interested in performance-critical and
concurrent applications. Whether you are transitioning to a new role or
enhancing your current one, this course provides the knowledge and skills
to excel in Rust programming.

Prerequisites:

Proficiency in Python Programming: A strong understanding of Python
syntax, functions, and modules.

Basic Knowledge of Programming Concepts: Familiarity with variables,
expressions, control flow (loops and conditionals), and basic data structures.

Experience with Version Control Systems: Basic experience using Git for
version control, including committing, branching, and merging code.

Understanding of Software Development Practices: Familiarity with project
management tools and practices such as virtual environments, dependency
management, and code testing.

 

 

Course Outline:

Getting Started with Rust

What is Rust?

Philosophy and Goals

History and Motivation

Differences between Rust and Python

Rust Community and Ecosystem

Exploring the Rust Playground

Install Rust (Optional)

Installation Script

Using macOS Homebrew

Page 3/9 https://www.quickstart.com/hands-on-rust-programming-for-python-developers-ttrs2100.html



Platform-Specific Installers

Rust Editors

Setting up VSCode with Rust Extensions

Using Rust Rover IDE

Debugging Rust Code in VSCode

Integrating GitHub Copilot for Rust

Hello World

Creating a New Rust Project

Writing the Main Function

Printing to the Console

Adding Comments to Code

Cargo

Understanding What Cargo Is

Comparing Cargo to Pip and Conda

Rust Crates vs Python Packages

Using Run, Build, and Release Commands

Installing and Managing Third-Party Crates

Popular Cargo Crates

Overview of Serde for Serialization

Introduction to Tokio for Asynchronous Programming

Using Reqwest for HTTP Requests

Working with SQLx for Database Interactions

Error Handling with Anyhow

Page 4/9 https://www.quickstart.com/hands-on-rust-programming-for-python-developers-ttrs2100.html



Rust and Python Differences

Static Typing in Rust vs Dynamic Typing in Python

Memory Management Techniques

Error Handling Approaches

Control Flow: Sequence, Selection, and Iteration

Structs vs Classes, and Traits vs Protocols

Scalar Types and Data

Comparing Rust Types with Python Types

Defining Constants in Rust

Using Immutable Variables

Utilizing Mutable Variables

Code Logic

Writing If Statements

Using Loops with Break

Implementing While Loops

Functions

Defining and Calling Functions

Specifying Parameter and Return Types

Creating and Using Closure Functions

Modules

Importing Modules from the Standard Library

Importing Modules from Third-Party Crates

Defining Custom Modules

Page 5/9 https://www.quickstart.com/hands-on-rust-programming-for-python-developers-ttrs2100.html



Importing and Using Custom Modules

Built-In Macros

Using print!, println!, and format! Macros

Working with vec!, include_str!, and include_bytes!

Employing cfg!, env!, and panic! Macros

Memory Management

Understanding Ownership & Borrowing Concepts

Working with References

Differentiating Immutable vs Mutable References

Managing Lifetimes in Rust

Heap Allocation with Box and Rc

Strings

Using String Slices and String Objects

Converting Between Slices and Strings

Parsing Numbers from Strings

Trimming Strings and Printing with Interpolation

Tuples

Understanding What a Tuple Is

Using Heterogeneous Elements

Accessing and Destructuring Tuple Elements

Immutability of Tuples

Enums

Defining and Using Enums

Page 6/9 https://www.quickstart.com/hands-on-rust-programming-for-python-developers-ttrs2100.html



Exploring Enum Variants and Methods

Pattern Matching with Enums

Working with Result and Option Enums

Structs

Creating and Using Struct Instances

Using Field Initialization Shorthand

Implementing Methods and Associated Functions

Employing the Constructor Pattern

Vectors

Creating and Managing Vectors

Adding and Removing Elements

Accessing and Iterating Over Elements

Slicing, Checking Length, and Capacity

Collections and Iterators

Using Vectors, Arrays, and Slices

Working with HashMaps and Hash Sets

Implementing Iteration with Iterators

Traits

Defining and Implementing Traits

Using Default Trait Implementations

Passing Traits as Parameters and Return Types

Generics

Defining and Implementing Generics in Rust

Page 7/9 https://www.quickstart.com/hands-on-rust-programming-for-python-developers-ttrs2100.html



Using Generic Bounds and Multiple Types

Writing Where Clauses for Generics

Pattern Matching

Understanding Pattern Matching Concepts

Using Match, If Let, and While Let Statements

Destructuring Structs and Tuples

Pattern Matching with Enums and Functions

Concurrent Programming

Introduction to Concurrent Programming Concepts

Using Multiple Threads in Rust

Working with Mutex, RwLock, and Arc

Message Passing with Channels

Futures and Async/Await for Concurrency

Unsafe Rust

Understanding the Need for Unsafe Rust

Working with Raw Pointers and Dereferencing

Calling Unsafe Functions and Creating Safe Abstractions

Using Unsafe Traits and Blocks

Macros and Metaprogramming

Defining and Using Macros with macro_rules!

Pattern Matching in Macros

Defining and Expanding Custom Macros

Tests

Page 8/9 https://www.quickstart.com/hands-on-rust-programming-for-python-developers-ttrs2100.html



Writing and Organizing Test Functions

Using Test Attributes and Coverage Tools

Assertions with assert!, assert_eq!, and assert_ne!

Documentation with Rustdoc

Generating Documentation with Rustdoc

Adding Triple-Slash Comments and #[doc] Attributes

Linking and Cross-Referencing Documentation

Python Extension written in Rust (overview)

Creating and Running Python Extensions in Rust

Compiling and Debugging Rust Extensions

Running Parallel Code Outside of the GIL

Managing GIL and Rust Lifetimes

Creating Python Classes in Rust

Wrapping It Up

Recap of Key Rust Concepts

Next Steps for Further Learning and Practice

Powered by TCPDF (www.tcpdf.org)

Page 9/9 https://www.quickstart.com/hands-on-rust-programming-for-python-developers-ttrs2100.html

http://www.tcpdf.org

