QUICKSTART

Over 35 Years Of Technology Training

Document Generated: 01/07/2026
Learning Style: Virtual Classroom
Technology:

Difficulty: Beginner

Course Duration: 5 Days

Hands-on Rust Programming: From Basics to
Proficiency (TTRS2103)

About This Course:
Rust is a cutting-edge programming language designed for high performance,

safety, and concurrent systems. Known for its focus on memory safety without
garbage collection and seamless concurrency, Rust empowers developers to create

Page 1/11 https://www.quickstart.com/hands-on-rust-programming-from-basics-to-proficiency-ttrs2103.html



reliable, efficient applications at scale. Whether you're an experienced developer
looking to enhance your systems programming skills or exploring Rust for the first
time, this five-day immersive course will help you master the language and build
confidence in tackling complex projects.

Hands-on Rust Programming: From Basics through Proficiency dives deep into
Rust's unique features, such as ownership and borrowing, pattern matching, and its
powerful concurrency model. Led by an expert instructor, the course blends
engaging lectures with practical labs to ensure you gain both theoretical knowledge
and applied experience. You'll explore topics ranging from Rust's syntax, modules,
and traits to advanced concepts like unsafe Rust, macros, and FFI integration,
equipping you with the skills needed to build high-performance, safe, and scalable
software.

The workshop-style format dedicates half the class time to hands-on exercises,
where you'll work on real-world applications, such as writing tests, managing
memory effectively, and deploying concurrent systems. By the end of the course,
you'll be proficient in Rust, capable of creating robust, well-documented, and
efficient programs, and ready to harness Rust's full potential in your projects.

Course Objectives:

e Working in a hands-on learning environment led by our expert instructor you
will explore:

¢ Understand Rust's Philosophy and Setup: Learn the principles behind Rust's
design, install and configure the Rust environment, and navigate tools like
Cargo and Rust Playground.

¢ Master Rust Syntax and Semantics: Write efficient code using Rust's unique
syntax for control flow, functions, and modules.

¢ Implement Effective Memory Management: Master ownership, borrowing,
and lifetimes to ensure memory safety and efficiency in your applications.

¢ Harness Rust's Concurrency Model: Build concurrent applications with
Rust's tools, including threads, Mutex, RwLock, and async/await for
multitasking.

e Utilize Rust's Ecosystem and Tools: Leverage Cargo for dependency
management and explore popular crates to enhance your projects.

e Apply Advanced Rust Features: Develop complex solutions using traits,
generics, macros, and unsafe Rust for optimized performance and flexibility.

¢ Build and Document Applications: Write robust tests using Rust's testing
framework, and create clear, professional documentation with Rustdoc.

Audience:

Page 2/11 https://www.quickstart.com/hands-on-rust-programming-from-basics-to-proficiency-ttrs2103.html



e This course is designed for experienced software developers, system
programmers, and engineers eager to adopt Rust for performance-critical
and concurrent applications. Whether you're transitioning to systems
programming or enhancing your current skill set, this training is ideal for
those aiming to leverage Rust for its uniqgue combination of performance,
safety, and concurrency.

Prerequisites:
¢ Basic Programming Knowledge: Familiarity with core programming concepts
such as variables, loops, conditionals, and functions, gained from

experience with any programming language.

¢ Basic Systems Knowledge: Understanding of memory management
principles and general software development practices.

Course Outline:

1. Introduction

2. What is Rust?
¢ Rust's Philosophy and Goals
¢ History and motivation
¢ Rust Community

¢ The Rust Playground

3. Install Rust
e Rustup Script
* macOS Homebrew

e Platform Installers

Page 3/11 https://www.quickstart.com/hands-on-rust-programming-from-basics-to-proficiency-ttrs2103.html



4. Rust Editors & Al Tools
¢ VSCode with Extensions
* Rust Rover
¢ Debug Rust in VSCode

e GitHub Copilot & ChatGPT

5. Hello World

Create a new Project

Main Function

Print to the Console

Comments

6. Cargo

¢ What is Cargo?

Run Command

Build Command

Build Release Command

Install Third-Party Crates

7. Scalar Types and Data

Rust Types

Constants

Immutable Variables

Mutable Variables

8. Code Logic

o If & If-Let

Page 4/11 https://www.quickstart.com/hands-on-rust-programming-from-basics-to-proficiency-ttrs2103.html



Match

Loop with Break & Continue

While & While-Let Loop

For-In Loop

Control-Flow as Expressions

9. Functions

¢ Define a Function

Call a Function

Parameter Types

Return Types

Closure Functions

10. Modules

¢ Import Modules from Standard Library

Import Modules from Third-Party Crates

Define Custom Modules

Import Custom Modules

Nested Modules

11. Built-In Macros

print! and printin!

format!

assert!, assert_eq!, and assert_ne!
¢ vec!

e panic!

Page 5/11 https://www.quickstart.com/hands-on-rust-programming-from-basics-to-proficiency-ttrs2103.html



12. Memory Management

¢ Challenges with Manual Management

Challenges with Garbage Collection

Ownership & Borrowing

Immutable & Mutable References

Lifetimes

13. Strings and String Slices

What is a String and a String Slice?

String Slices

Strings

Convert Between Slices and Strings

Parse Number from String

Trim String

Print Strings with Interpolation

14. Tuples

e What is a Tuple?

Heterogeneous Elements

Access Elements

Destructuring

Immutable

15. Enums
e What is an Enum?
e Define an Enum

e Using Enums

Page 6/11 https://www.quickstart.com/hands-on-rust-programming-from-basics-to-proficiency-ttrs2103.html



Enum Variants

Enum Methods

Enums and Pattern Matching

Result Enum
Option Enum

Enums vs Structs

16. Structs

What is a Struct?

Create Instance

Field Init Shorthand
Struct Update Syntax
Tuple Structs

Unit-Like Structs
Ownership of Struct Data
Function Implementation
Associated Functions
Stuct Methods

Constructor Pattern

17. Vectors

Page 7/11

What is a Vector?

Create a Vector

Add and Remove Elements

Access Elements

Iterate over Elements

https://www.quickstart.com/hands-on-rust-programming-from-basics-to-proficiency-ttrs2103.html



Slicing, Length, and Capacity

Common Vector Operations

Understand Memory Management

Ownership and Borrowing Rules

18. Collections and Iterators
e Vectors, arrays, and slices
¢ HashMaps and hash sets

¢ |teration and iterators

19. Traits
e What is a trait?
* How does a trait related to traditional OOP interfaces?
¢ Defining a trait
¢ Implementing a trait
¢ Default implementations
¢ Traits as parameters
¢ Traits as return types

¢ Traits as bounds

20. Generics

e What is a generic?

How does a generic related to traditional OOP generics?

Defining a generic

Implementing a generic

Generic bounds

Multiple generic types

Page 8/11 https://www.quickstart.com/hands-on-rust-programming-from-basics-to-proficiency-ttrs2103.html



¢ Where clauses

21. Pattern Matching
e What is Pattern Matching?
e Match Statement
e If-Let Statement
¢ While-Let Statement
e Destructuring Stucts and Tuples
e Pattern Matching with Enums
e Pattern Matching with Functions

e Pattern Matching and Ownership

Refutability and Irrefutability

22. Error Handling

¢ Result Enum

Unwrap & Expect

Map Error

? Operator

Handle Multiple Error Types with Box Dyn Error

Handle Multiple Error Types with Custom Enum

Handle Multiple Error Types with Anyhow

23. Concurrent Programming

What is Concurrent Programming?

Using Multiple Threads

Mutex, RwLock, and Arc

Message Passing with Channels

Page 9/11 https://www.quickstart.com/hands-on-rust-programming-from-basics-to-proficiency-ttrs2103.html



e Sync and Send Traits

¢ Futures and Async/Await

24. Unsafe Rust

What is Unsafe Rust?

e Raw Pointers

e Dereferencing Raw Pointers
¢ Calling Unsafe Functions

¢ Creating Safe Abstractions
¢ Unsafe Traits

e Unsafe Blocks

e Unsafe Superpowers

C/C++ FFI

25. Macros and Metaprogramming

¢ What is a Macro?

Define a Macro with macro_rules!

Using Pattern Matching

Define Expansion

Use the Custom Macro

26. Tests

What is a Test?

Test Functions

Test Organization

Test Attributes

Test Coverage

Page 10/11 https://www.quickstart.com/hands-on-rust-programming-from-basics-to-proficiency-ttrs2103.html



e assert!, assert_eq!, and assert_ne!

27. Documentation with Rustdoc

¢ What is Rustdoc?

Add Documentation to Rust Code

Triple-Slash Comments and the #[doc] Attribute

Generate Documentation

Linking and Cross-Referencing Documentation

Page 11/11 https://www.quickstart.com/hands-on-rust-programming-from-basics-to-proficiency-ttrs2103.html


http://www.tcpdf.org

