QUICKSTART

Over 35 Years Of Technology Training

Document Generated: 01/07/2026
Learning Style: Virtual Classroom
Technology:

Difficulty: Intermediate

Course Duration: 5 Days

Hands-on Rust Programming for C++ Programmers
(TTRS2105)

About This Course:
Rust is a modern programming language designed for performance and safety,

particularly in concurrent systems, offering a unique combination of efficiency and
reliability. Learning Rust equips you with the ability to write high-performance, bug-

Page 1/8 https://www.quickstart.com/hands-on-rust-programming-for-c-programmers-ttrs2105.html



free code, greatly enhancing your programming toolkit.

Geared for C++ experienced developers, Hands-on Rust Programming for C++
Programmers is designed to help you transition from C++ to Rust with confidence.
Led by an expert trainer, the course combines engaging lectures with hands-on
labs, ensuring you grasp Rust's unique features and gain practical experience.
You'll explore Rust's syntax, control flow, and module imports, and move on to
advanced topics like memory management, concurrency, and pattern matching. By
leveraging Cargo, you'll streamline project management and integrate popular
crates like Serde for serialization, Tokio for asynchronous programming, and SQLXx
for database interactions, enabling you to build robust, scalable applications.

The workshop-style format dedicates half of the class time to hands-on labs,
applying what you've learned in real-world scenarios. You'll gain expertise in writing
concurrent programs using Rust’s powerful tools, such as threads, Mutex, RwLock,
and async/await, ensuring your applications handle multiple tasks efficiently. You'll
also master pattern matching, creating readable and maintainable code. By the end
of the course, you'll be confident in writing comprehensive tests and documentation,
making you a highly effective programmer ready to tackle complex Rust projects
and advance your career

Course Objectives:

¢ Master Rust Syntax and Semantics: Get comfortable writing and
understanding Rust code, including how to use control flow, functions, and
module imports.

¢ Implement Memory Management: Learn to manage memory effectively in
Rust by mastering concepts like ownership, borrowing, and lifetimes to
ensure your code is both safe and efficient.

¢ Leverage Cargo and Crates: Become adept at using Cargo to manage Rust
projects and dependencies, and explore how to integrate popular crates like
Serde, Tokio, and SQLx to add powerful features to your applications.

e Utilize Rust's Concurrency Model: Discover how to write efficient and
concurrent programs using Rust’s concurrency tools, such as threads,
Mutex, RwLock, and async/await.

¢ Employ Pattern Matching and Generics: Understand and apply pattern
matching with enums and functions, and use generics to create flexible and
reusable code.

¢ Create and Test Rust Applications: Develop complete Rust applications,

including writing tests with Rust’s testing framework and generating clear,
comprehensive documentation using Rustdoc.

Audience:

Page 2/8 https://www.quickstart.com/hands-on-rust-programming-for-c-programmers-ttrs2105.html



¢ This course is designed for C++ developers looking to expand their
programming skills with Rust. It is ideal for software engineers, system
programmers, and developers interested in performance-critical and
concurrent applications. Whether you are transitioning to a new role or
enhancing your current one, this course provides the knowledge and skills
to excel in Rust programming.

Prerequisites:

¢ Proficiency in C++ Programming: A strong understanding of C++ syntax,
functions, and modules.

¢ Basic Knowledge of Programming Concepts: Familiarity with variables,
expressions, control flow (loops and conditionals), and basic data structures.

e Experience with Version Control Systems: Basic experience using Git for
version control, including committing, branching, and merging code.

¢ Understanding of Software Development Practices: Familiarity with project

management tools and practices such as virtual environments, dependency
management, and code testing.

Course Outline:

1. Getting Started with Rust

Rust’s Philosophy and Goals
History and motivation

Rust Community

The Rust Playground

2. Install Rust (Optional)
e Script
* macOS Homebrew

¢ Platform Installers

3. Rust Editors

VSCode with Extensions
Rust Rover

Debug Rust in VSCode
GitHub Copilot

4. Hello World

Page 3/8 https://www.quickstart.com/hands-on-rust-programming-for-c-programmers-ttrs2105.html



Create a new Project
Main Function

Print to the Console
Comments

5. Cargo

e What is Cargo?
e Run Command
¢ Build Command
¢ Build Release Command
e |nstall Third-Party Crates

6. Scalar Types and Data

Rust Types
Constants
Immutable Variables
Mutable Variables

7. Code Logic
e |f Statement
e Loop with Break
e While Loop

8. Functions

Define a Function
Call a Function
Parameter Types
Return Types
Closure Functions

9. Modules

Import Modules from Standard Library
Import Modules from Third-Party Crates
Define Custom Modules

Import Custom Modules

10. Built-In Macros

print! and printin!

format!

assert!, assert_eq!, and assert_ne!
e vec!

include_str! and include_bytes!

11. Memory Management

Page 4/8 https://www.quickstart.com/hands-on-rust-programming-for-c-programmers-ttrs2105.html



Problems with Manual Management
Problems with Garbage Collection
Ownership & Borrowing

References

Lifetimes

12. Strings and String Slices

What is a String and a String Slice?
String Slices

String Objects

Convert Between Slices and Strings
Print Strings with Interpolation

13. Tuples

What is a Tuple?
Heterogeneous Elements
Access Elements
Destructuring

Immutable

14. Enums

What is an Enum?
Define an Enum
Using Enums
Enum Variants
Enum Methods

15. Structs

e What is a Struct?

e Create Instance
Field Init Shorthand
Struct Methods
Constructor Pattern

16. Vectors

What is a Vector?

Create a Vector

Add and Remove Elements
Access Elements

Iterate over Elements

17. Collections and Iterators

e Vectors, arrays, and slices
¢ HashMaps and hash sets

Page 5/8 https://www.quickstart.com/hands-on-rust-programming-for-c-programmers-ttrs2105.html



¢ |teration and iterators

18. Traits

What is a trait?

Defining a trait
Implementing a trait
Default implementations
Traits as parameters

19. Generics

What is a generic?
Defining a generic
Implementing a generic
Generic bounds
Multiple generic types

20. Pattern Matching

What is Pattern Matching?
Match Statement

If Let Statement

While Let Statement

Pattern Matching with Enums

21. Concurrent Programming

¢ What is Concurrent Programming?
Using Multiple Threads

Mutex, RwLock, and Arc

Message Passing with Channels
Futures and Async/Await

22. Unsafe Rust

¢ What is Unsafe Rust?

Raw Pointers

Dereferencing Raw Pointers
Calling Unsafe Functions
Creating Safe Abstractions

23. Macros and Metaprogramming

What is a Macro?

Define a Macro with macro_rules!
Using Pattern Matching

Define Expansion

Use the Custom Macro

Page 6/8 https://www.quickstart.com/hands-on-rust-programming-for-c-programmers-ttrs2105.html



24. Tests

What is a Test?
Test Functions
Test Organization
Test Attributes
Test Coverage

25. Memory-Safe Programming

¢ How Memory is Managed on a Computer

How the Operating System Views Memory
How Memory is Allocated in a Process

Pitfalls with manual memory management
Rust’'s Approach to Safe Memory Management

26. Memory Management

¢ Variables and their Data

Variable Addresses and Data Addresses
Mutability of Variables and their Data
Variable and Data Ownership

Rust’s Approach to Variables and their Data

27. Rust Memory Model

Ownership and Borrowing

References and Mutability

Stack Allocation vs Heap Allocation
Smart Pointers

Thread Safety through Atomics and Locks

28. Smart Pointers

What are Smart Pointers?
When to use Smart Pointers?
Unknown Size at Compile Time
Self-Referential Structures
Interior Mutability

29. Smart Pointer Types

e Box

Rc, Weak, and Arc
Cell and RefCell
RwLock and Mutex

30. C++ and Rust Interoperability

¢ Challenges and Concerns

Page 7/8 https://www.quickstart.com/hands-on-rust-programming-for-c-programmers-ttrs2105.html



¢ Calling Rust from C++
e Calling C++ from Rust

31. Valgrind and Rust

32. Documentation with Rustdoc

e What is Rustdoc?

Add Documentation to Rust Code

Triple-Slash Comments and the #[doc] Attribute
Generate Documentation

Linking and Cross-Referencing Documentation

33. Wrapping It Up

¢ Recap of Key Rust Concepts
¢ Next Steps for Further Learning and Practice

Page 8/8 https://www.quickstart.com/hands-on-rust-programming-for-c-programmers-ttrs2105.html


http://www.tcpdf.org

