
 Document Generated: 01/07/2026

Learning Style: Virtual Classroom

Technology: 

Difficulty: Intermediate

Course Duration: 5 Days

Hands-on Rust Programming for C++ Programmers
(TTRS2105)

 

About This Course:

Rust is a modern programming language designed for performance and safety,
particularly in concurrent systems, offering a unique combination of efficiency and
reliability. Learning Rust equips you with the ability to write high-performance, bug-

Page 1/8 https://www.quickstart.com/hands-on-rust-programming-for-c-programmers-ttrs2105.html



free code, greatly enhancing your programming toolkit.

Geared for C++ experienced developers, Hands-on Rust Programming for C++
Programmers is designed to help you transition from C++ to Rust with confidence.
Led by an expert trainer, the course combines engaging lectures with hands-on
labs, ensuring you grasp Rust's unique features and gain practical experience.
You'll explore Rust's syntax, control flow, and module imports, and move on to
advanced topics like memory management, concurrency, and pattern matching. By
leveraging Cargo, you'll streamline project management and integrate popular
crates like Serde for serialization, Tokio for asynchronous programming, and SQLx
for database interactions, enabling you to build robust, scalable applications.

The workshop-style format dedicates half of the class time to hands-on labs,
applying what you've learned in real-world scenarios. You'll gain expertise in writing
concurrent programs using Rust’s powerful tools, such as threads, Mutex, RwLock,
and async/await, ensuring your applications handle multiple tasks efficiently. You'll
also master pattern matching, creating readable and maintainable code. By the end
of the course, you'll be confident in writing comprehensive tests and documentation,
making you a highly effective programmer ready to tackle complex Rust projects
and advance your career

Course Objectives:

Master Rust Syntax and Semantics: Get comfortable writing and
understanding Rust code, including how to use control flow, functions, and
module imports.

Implement Memory Management: Learn to manage memory effectively in
Rust by mastering concepts like ownership, borrowing, and lifetimes to
ensure your code is both safe and efficient.

Leverage Cargo and Crates: Become adept at using Cargo to manage Rust
projects and dependencies, and explore how to integrate popular crates like
Serde, Tokio, and SQLx to add powerful features to your applications.

Utilize Rust's Concurrency Model: Discover how to write efficient and
concurrent programs using Rust’s concurrency tools, such as threads,
Mutex, RwLock, and async/await.

Employ Pattern Matching and Generics: Understand and apply pattern
matching with enums and functions, and use generics to create flexible and
reusable code.

Create and Test Rust Applications: Develop complete Rust applications,
including writing tests with Rust’s testing framework and generating clear,
comprehensive documentation using Rustdoc.

Audience:

Page 2/8 https://www.quickstart.com/hands-on-rust-programming-for-c-programmers-ttrs2105.html



This course is designed for C++ developers looking to expand their
programming skills with Rust. It is ideal for software engineers, system
programmers, and developers interested in performance-critical and
concurrent applications. Whether you are transitioning to a new role or
enhancing your current one, this course provides the knowledge and skills
to excel in Rust programming.

Prerequisites:

Proficiency in C++ Programming: A strong understanding of C++ syntax,
functions, and modules.

Basic Knowledge of Programming Concepts: Familiarity with variables,
expressions, control flow (loops and conditionals), and basic data structures.

Experience with Version Control Systems: Basic experience using Git for
version control, including committing, branching, and merging code.

Understanding of Software Development Practices: Familiarity with project
management tools and practices such as virtual environments, dependency
management, and code testing.

 

Course Outline:

1. Getting Started with Rust

Rust’s Philosophy and Goals
History and motivation
Rust Community
The Rust Playground

2. Install Rust (Optional)

Script
macOS Homebrew
Platform Installers

3. Rust Editors

VSCode with Extensions
Rust Rover
Debug Rust in VSCode
GitHub Copilot

4. Hello World

Page 3/8 https://www.quickstart.com/hands-on-rust-programming-for-c-programmers-ttrs2105.html



Create a new Project
Main Function
Print to the Console
Comments

5. Cargo

What is Cargo?
Run Command
Build Command
Build Release Command
Install Third-Party Crates

6. Scalar Types and Data

Rust Types
Constants
Immutable Variables
Mutable Variables

7. Code Logic

If Statement
Loop with Break
While Loop

8. Functions

Define a Function
Call a Function
Parameter Types
Return Types
Closure Functions

9. Modules

Import Modules from Standard Library
Import Modules from Third-Party Crates
Define Custom Modules
Import Custom Modules

10. Built-In Macros

print! and println!
format!
assert!, assert_eq!, and assert_ne!
vec!
include_str! and include_bytes!

11. Memory Management

Page 4/8 https://www.quickstart.com/hands-on-rust-programming-for-c-programmers-ttrs2105.html



Problems with Manual Management
Problems with Garbage Collection
Ownership & Borrowing
References
Lifetimes

12. Strings and String Slices

What is a String and a String Slice?
String Slices
String Objects
Convert Between Slices and Strings
Print Strings with Interpolation

13. Tuples

What is a Tuple?
Heterogeneous Elements
Access Elements
Destructuring
Immutable

14. Enums

What is an Enum?
Define an Enum
Using Enums
Enum Variants
Enum Methods

15. Structs

What is a Struct?
Create Instance
Field Init Shorthand
Struct Methods
Constructor Pattern

16. Vectors

What is a Vector?
Create a Vector
Add and Remove Elements
Access Elements
Iterate over Elements

17. Collections and Iterators

Vectors, arrays, and slices
HashMaps and hash sets

Page 5/8 https://www.quickstart.com/hands-on-rust-programming-for-c-programmers-ttrs2105.html



Iteration and iterators

18. Traits

What is a trait?
Defining a trait
Implementing a trait
Default implementations
Traits as parameters

19. Generics

What is a generic?
Defining a generic
Implementing a generic
Generic bounds
Multiple generic types

20. Pattern Matching

What is Pattern Matching?
Match Statement
If Let Statement
While Let Statement
Pattern Matching with Enums

21. Concurrent Programming

What is Concurrent Programming?
Using Multiple Threads
Mutex, RwLock, and Arc
Message Passing with Channels
Futures and Async/Await

22. Unsafe Rust

What is Unsafe Rust?
Raw Pointers
Dereferencing Raw Pointers
Calling Unsafe Functions
Creating Safe Abstractions

23. Macros and Metaprogramming

What is a Macro?
Define a Macro with macro_rules!
Using Pattern Matching
Define Expansion
Use the Custom Macro

Page 6/8 https://www.quickstart.com/hands-on-rust-programming-for-c-programmers-ttrs2105.html



24. Tests

What is a Test?
Test Functions
Test Organization
Test Attributes
Test Coverage

25. Memory-Safe Programming

How Memory is Managed on a Computer
How the Operating System Views Memory
How Memory is Allocated in a Process
Pitfalls with manual memory management
Rust’s Approach to Safe Memory Management

26. Memory Management

Variables and their Data
Variable Addresses and Data Addresses
Mutability of Variables and their Data
Variable and Data Ownership
Rust’s Approach to Variables and their Data

27. Rust Memory Model

Ownership and Borrowing
References and Mutability
Stack Allocation vs Heap Allocation
Smart Pointers
Thread Safety through Atomics and Locks

28. Smart Pointers

What are Smart Pointers?
When to use Smart Pointers?
Unknown Size at Compile Time
Self-Referential Structures
Interior Mutability

29. Smart Pointer Types

Box
Rc, Weak, and Arc
Cell and RefCell
RwLock and Mutex

30. C++ and Rust Interoperability

Challenges and Concerns

Page 7/8 https://www.quickstart.com/hands-on-rust-programming-for-c-programmers-ttrs2105.html



Calling Rust from C++
Calling C++ from Rust

31. Valgrind and Rust

32. Documentation with Rustdoc

What is Rustdoc?
Add Documentation to Rust Code
Triple-Slash Comments and the #[doc] Attribute
Generate Documentation
Linking and Cross-Referencing Documentation

33. Wrapping It Up

Recap of Key Rust Concepts
Next Steps for Further Learning and Practice

Powered by TCPDF (www.tcpdf.org)

Page 8/8 https://www.quickstart.com/hands-on-rust-programming-for-c-programmers-ttrs2105.html

http://www.tcpdf.org

