
 Document Generated: 02/17/2026

Learning Style: Virtual Classroom

Technology: Linux Foundation

Difficulty: Intermediate

Course Duration: 4 Days

Linux Kernel Internals and Development (LFD420)

Page 1/8 https://www.quickstart.com/linux-kernel-internals-and-development-lfd420.html

Intro to Course:

Know how to design Linux Kernel. This course is designed for you to learn how the
Linux is structured. The primary tools for designing the Kernel and how productively
work with the Linux Developer community. This course is absolutely designed for
you if you are interested to know about Linux Kernel.

The main design of the course is to offer experience programmers with the strong
knowledge of the Linux Kernel. Additionally, it provides in-depth knowledge of the
theoretical and ideological aspects of Linux Kernel. Participations will be offered in
practical trainings and demonstrative presentations, developed to give you
important utilities to design and debug Linux Kernel code.

An Embedded Linux Developer usually gets a pay of US $ 107,500 per annum on
an average.

Course Outline:

After attending this course, you will have a knowledge of:

How Linux is structured.
How Kernel algorithms work
Hardware and Memory Management
Modularization tools and debugging.
The operation of kernel developer communities and how to work with it more
productively.
And so on.

This course will also teach you on how to go on with any major Linux distribution.

Who can enroll?

App Developers
C/C ++, C# Developers
Linux Developers

Main Requirement!

Before you enrolled in this course, you must:

Expert in C programming language.
Have knowledge of basic Linux (UNIX) tools such as Is, Grep and Tar.
Hand on any available text editors such as Emacs, Vi etc.
An experience of important Linux distribution will be an added advantage,
but not a requirement.

Course Outline:

Introduction

Page 2/8 https://www.quickstart.com/linux-kernel-internals-and-development-lfd420.html

Objectives
Who You Are
The Linux Foundation
Linux Foundation Training
Linux Distributions
Platforms
Preparing Your System
Using and Downloading a Virtual Machine
Things change in Linux
Documentation and Links
Course Registration

Preliminaries

Procedures
Kernel Versions
Kernel Sources and Use of git

How to Work in OSS Projects **

Overview on How to Contribute Properly
Stay Close to Mainline for Security and Quality
Study and Understand the Project DNA
Figure Out What Itch You Want to Scratch
Identify Maintainers and Their Work Flows and Methods
Get Early Input and Work in the Open
Contribute Incremental Bits, Not Large Code Dumps
Leave Your Ego at the Door: Don’t Be Thin-Skinned
Be Patient, Develop Long Term Relationships, Be Helpful

Kernel Architecture I

UNIX and Linux **
Monolithic and Micro Kernels
Object-Oriented Methods
Main Kernel Tasks
User-Space and Kernel-Space
Kernel Mode Linux **

Kernel Programming Preview

Error Numbers and Getting Kernel Output
Task Structure
Memory Allocation
Transferring Data between User and Kernel Spaces
Linked Lists
String to Number Conversions
Jiffies
Labs

Page 3/8 https://www.quickstart.com/linux-kernel-internals-and-development-lfd420.html

Modules

What are Modules?
A Trivial Example
Compiling Modules
Modules vs Built-in
Module Utilities
Automatic Loading/Unloading of Modules
Module Usage Count
The module struct
Module Licensing
Exporting Symbols
Resolving Symbols **
Labs

Kernel Architecture II

Processes, Threads, and Tasks
Process Context
Kernel Preemption
Real Time Preemption Patch
Dynamic Kernel Patching
Run-time Alternatives **
Porting to a New Platform **
Labs

Kernel Initialization

Overview of System Initialization
System Boot
Das U-Boot for Embedded Systems**

Kernel Configuration and Compilation

Installation and Layout of the Kernel Source
Kernel Browsers
Kernel Configuration Files
Kernel Building and Makefiles
initrd and initramfs
Labs

System Calls

What are System Calls?
Available System Calls
How System Calls are Implemented
Adding a New System Call
Labs

Kernel Style and General Considerations

Page 4/8 https://www.quickstart.com/linux-kernel-internals-and-development-lfd420.html

Coding Style
kernel-doc **
Using Generic Kernel Routines and Methods
Making a Kernel Patch
sparse
Using likely() and unlikely()
Writing Portable Code, CPU, 32/64-bit, Endianness
Writing for SMP
Writing for High Memory Systems
Power Management
Keeping Security in Mind
Mixing User- and Kernel-Space Headers **
Labs

Race Conditions and Synchronization Methods

Concurrency and Synchronization Methods
Atomic Operations
Bit Operations
Spinlocks
Seqlocks
Disabling Preemption
Mutexes
Semaphores
Completion Functions
Read-Copy-Update (RCU)
Reference Counts
Labs

SMP and Threads

SMP Kernels and Modules
Processor Affinity
CPUSETS
SMP Algorithms – Scheduling, Locking, etc.
Per-CPU Variables **
Labs

Processes

What are Processes?
The task_struct
Creating User Processes and Threads
Creating Kernel Threads
Destroying Processes and Threads
Executing User-Space Processes From Within the Kernel
Labs

Process Limits and Capabilities **

Page 5/8 https://www.quickstart.com/linux-kernel-internals-and-development-lfd420.html

Process Limits
Capabilities
Labs

Monitoring and Debugging

Debuginfo Packages
Tracing and Profiling
sysctl
SysRq Key
oops Messages
Kernel Debuggers
debugfs
Labs

Scheduling

Main Scheduling Tasks
SMP
Scheduling Priorities
Scheduling System Calls
The 2.4 schedule() Function
O(1) Scheduler
Time Slices and Priorities
Load Balancing
Priority Inversion and Priority Inheritance **
The CFS Scheduler
Calculating Priorities and Fair Times
Scheduling Classes
CFS Scheduler Details
Labs

Memory Addressing

Virtual Memory Management
Systems With and Without MMU and the TLB
Memory Addresses
High and Low Memory
Memory Zones
Special Device Nodes
NUMA
Paging
Page Tables
page structure
Kernel Samepage Merging (KSM) **
Labs

Huge Pages

Huge Page Support

Page 6/8 https://www.quickstart.com/linux-kernel-internals-and-development-lfd420.html

libhugetlbfs
Transparent Huge Pages
Labs

Memory Allocation

Requesting and Releasing Pages
Buddy System
Slabs and Cache Allocations
Memory Pools
kmalloc()
vmalloc()
Early Allocations and bootmem()
Memory Defragmentation
Labs

Process Address Space

Allocating User Memory and Address Spaces
Locking Pages
Memory Descriptors and Regions
Access Rights
Allocating and Freeing Memory Regions
Page Faults
Labs

Disk Caches and Swapping

Caches
Page Cache Basics
What is Swapping?
Swap Areas
Swapping Pages In and Out
Controlling Swappiness
The Swap Cache
Reverse Mapping **
OOM Killer
Labs

Device Drivers**

Types of Devices
Device Nodes
Character Drivers
An Example
Labs

Signals

What are Signals?

Page 7/8 https://www.quickstart.com/linux-kernel-internals-and-development-lfd420.html

Available Signals
System Calls for Signals
Sigaction
Signals and Threads
How the Kernel Installs Signal Handlers
How the Kernel Sends Signals
How the Kernel Invokes Signal Handlers
Real Time Signals
Labs

Closing and Evaluation Survey

** These sections may be considered in part or in whole as optional. They
contain either background reference material, specialized topics, or advanced
subjects. The instructor may choose to cover or not cover them depending on
classroom experience and time constraints

Credly Badge:

 Display your Completion Badge And Get The
Recognition You Deserve.

Add a completion and readiness badge to your
Linkedin profile, Facebook page, or Twitter account to
validate your professional and technical expertise. With
badges issued and validated by Credly, you can:

Let anyone verify your completion and
achievement by clicking on the badge
Display your hard work and validate your
expertise
Display each badge's details about specific
skills you developed.

Badges are issued by QuickStart and verified through
Credly.

 Find Out More or See List Of Badges

Powered by TCPDF (www.tcpdf.org)

Page 8/8 https://www.quickstart.com/linux-kernel-internals-and-development-lfd420.html

https://www.credly.com/org/quickstart/badge/linux-kernel-internals-and-development-lfd420.1
https://www.credly.com/org/quickstart/badge/linux-kernel-internals-and-development-lfd420.1
https://www.credly.com/org/quickstart/badge/linux-kernel-internals-and-development-lfd420.1
https://www.quickstart.com/completion-badges
https://www.credly.com/organizations/quickstart/badges
http://www.tcpdf.org

