AUICKSTART

Over 35 Years Of Technology Training

Document Generated: 02/17/2026
Learning Style: Virtual Classroom
Technology: Linux Foundation
Difficulty: Intermediate

Course Duration: 4 Days

Developing Linux Device Drivers (LFD430)

Page 1/9

https://www.quickstart.com/developing-linux-device-drivers-Ifd430.html

About this Course:

The Developing Linux Device Drivers (LFD430) is a comprehensive intermediate-
level training program for professional App Developers and Language Programmers
who want to attain a better understanding of developing Linux System Device
Drivers. The primary objective of this course is to give an overview of major Linux
device drivers and the appropriate Linux methods and APIs for Kernel device
interfaces.

Professionals Linux Developers and C# & C/C++ Developers will learn the art of
developing Linux device drivers and can utilize these learnings to help businesses
maximize productivity. Businesses are always on the lookout for a proficient App
Developers who can optimize and manage Linux system applications seamlessly.
On average, an Embedded Linux Developer earns $107,500 annually and there is a
great demand of professionals having proficiency in Linux device driver
development.

Course Objective:

The core objective of this course is to help professionals gain a better
understanding and sound knowledge of the following key concepts:

¢ Numerous Kinds of Linux Device Drivers

Fundamental of Linux APIs and Kernel Hardware and Software Device
Interface

Best Practices and Module Techniques for Linux

Debugging and Developing Linux Device Drivers

Getting to Know Popular Linux Distributions

Audience:
This course is tailored for the following group of professionals:
e Programmers and App Developers

e C# & C/C++ Developers
e Professional Linux Developers

Prerequisites:

Professionals planning to enroll in the Developing Linux Device Drivers (LFD430)
course must comply with the following prerequisites:

¢ Fundamental Knowledge of Kernel Interfaces including loading and
unloading modules, creating & compiling interfaces, and synchronizing
primitives.

¢ Basic Know-how of Management and Memory Allocation Essentials such as
LFD420 Linux Kernel Development and Internals.

Course Outline:

Page 2/9 https://www.quickstart.com/developing-linux-device-drivers-Ifd430.html

Introduction

Objectives

Who You Are

The Linux Foundation
Linux Foundation Training
Linux Distributions
Platforms

Preparing Your System
Using and Downloading a Virtual Machine
Things change in Linux
Documentation and Links
Course Registration

Preliminaries

Procedures

Kernel Versions

Kernel Sources and Use of git
Rolling Your Own Kernel
Hardware

Staging Tree

How to Work in OSS Projects **

Overview on How to Contribute Properly

Stay Close to Mainline for Security and Quality

Study and Understand the Project DNA

Figure Out What Itch You Want to Scratch

Identify Maintainers and Their Work Flows and Methods

Get Early Input and Work in the Open

Contribute Incremental Bits, Not Large Code Dumps
Leave Your Ego at the Door: Don’t Be Thin-Skinned
Be Patient, Develop Long Term Relationships, Be Helpful

Device Drivers

Types of Devices

Mechanism vs. Policy

Avoiding Binary Blobs

Power Management

How Applications Use Device Drivers

Walking Through a System Call Accessing a Device

Error Numbers

printk()

devres: Managed Device Resources
Labs

Modules and Device Drivers

Page 3/9

https://www.quickstart.com/developing-linux-device-drivers-Ifd430.html

e The module_driver() Macros
e Modules and Hot Plug
e Labs

Memory Management and Allocation

Virtual and Physical Memory
Memory Zones

Page Tables

kmalloc()
__get_free_pages()
vmalloc()

Slabs and Cache Allocations
Labs

Character Devices

Device Nodes

Major and Minor Numbers
Reserving Major/Minor Numbers
Accessing the Device Node
Registering the Device

udev

dev_printk() and Associates
file_operations Structure

Driver Entry Points

The file and inode Structures
Miscellaneous Character Drivers
Labs

Kernel Features

Transferring Between User and Kernel Space

Page 4/9

Components of the Kernel
User-Space vs. Kernel-Space
What are System Calls?
Available System Calls

Scheduling Algorithms and Task Structures

Process Context
Labs

Transferring Between Spaces

put(get) _user() and copy_to(from)_user()

Direct Transfer: Kernel I/O and Memory Mapping

Kernel 1/0

Mapping User Pages

Memory Mapping

User-Space Functions for mmap()
Driver Entry Point for mmap()

https://www.quickstart.com/developing-linux-device-drivers-Ifd430.html

¢ Accessing Files from the Kernel
e Labs

Interrupts and Exceptions

e What are Interrupts and Exceptions?

e Exceptions

e Asynchronous Interrupts

e MSI

e Enabling/Disabling Interrupts

e What You Cannot Do at Interrupt Time
¢ |IRQ Data Structures

¢ |nstalling an Interrupt Handler

e Labs

Timing Measurements

¢ Kinds of Timing Measurements
e Jiffies

e Getting the Current Time

¢ Clock Sources

¢ Real Time Clock

e Programmable Interval Timer

e Time Stamp Counter

e HPET

e Going Tickless

e Labs

Kernel Timers

e Inserting Delays

e What are Kernel Timers?

¢ Low Resolution Timer Functions

¢ Low Resolution Timer Implementation
¢ High Resolution Timers

¢ Using High Resolution Timers

e Labs

ioctls
¢ What are ioctls?
e Driver Entry point for ioctls
¢ Defining ioctls
e Labs

Unified Device Model and sysfs
¢ Unified Device Model

e Basic Structures
e Real Devices

Page 5/9 https://www.quickstart.com/developing-linux-device-drivers-Ifd430.html

e sysfs
¢ kset and kobject examples
e Labs

Firmware

e What is Firmware?
e Loading Firmware
e Labs

Sleeping and Wait Queues

e What are Wait Queues?

e Going to Sleep and Waking Up
¢ Going to Sleep Details

¢ Exclusive Sleeping

¢ Waking Up Details

e Polling

e Labs

Interrupt Handling: Deferrable Functions and User Drivers

e Top and Bottom Halves

e Softirgs

e Tasklets

e Work Queues

¢ New Work Queue API

e Creating Kernel Threads

e Threaded Interrupt Handlers

e Interrupt Handling in User-Space
e Labs

Hardware 1/O

e Buses and Ports

e Memory Barriers

¢ Registering I/O Ports

e Reading and Writing Data from 1/0O Registers
¢ Allocating and Mapping I1/O Memory

e Accessing I/0O Memory

e Access by User — ioperm(), iopl(), /dev/port

e Labs

PCI

e What is PCI?

¢ PCI Device Drivers

e Locating PCI Devices

e Accessing Configuration Space

e Accessing I/0O and Memory Spaces

Page 6/9 https://www.quickstart.com/developing-linux-device-drivers-Ifd430.html

e PCI Express
e Labs

Platform Drivers**

What are Platform Drivers?
Main Data Structures
Registering Platform Devices
An Example

Hardcoded Platform Data
The New Way: Device Trees
Labs

Direct Memory Access (DMA)

What is DMA?

DMA Directly to User
DMA and Interrupts

DMA Memory Constraints
DMA Masks

DMA API

DMA Pools
Scatter/Gather Mappings
Labs

Network Drivers |: Basics

Network Drivers |l: Data Structures

Network Layers and Data Encapsulation

Datalink Layer

Network Device Drivers
Loading/Unloading
Opening and Closing
Labs

net_device Structure
net_device_ops Structure
sk_buff Structure

Socket Buffer Functions

netdev_printk() and Associates

Labs

Network Drivers Ill: Transmission and Reception

Page 7/9

Transmitting Data and Timeouts

Receiving Data
Statistics
Labs

https://www.quickstart.com/developing-linux-device-drivers-Ifd430.html

Network Drivers IV: Selected Topics

¢ Multicasting **

e Changes in Link State

e joctls

e NAPI and Interrupt Mitigation
¢ NAPI Details

e TSO and TOE

¢ MIl and ethtool **

USB Drivers

e What is USB?

e USB Topology

e Terminology

e Endpoints

e Descriptors

e USB Device Classes

e USB Support in Linux

¢ Registering USB Device Drivers
¢ Moving Data

e Example of a USB Driver
e Labs

Power Management

* Power Management
e ACPI and APM

e System Power States
e Callback Functions

e Labs

Block Drivers

What are Block Drivers?
Buffering

Registering a Block Driver
gendisk Structure
Request Handling

Labs

Closing and Evaluation Survey

e Evaluation Survey

** These sections may be considered in part or in whole as optional. They
contain either background reference material, specialized topics, or advanced
subjects. The instructor may choose to cover or not cover them depending on

classroom experience and time constraints.

Page 8/9

https://www.quickstart.com/developing-linux-device-drivers-Ifd430.html

Credly Badge:

Display your Completion Badge And Get The
Recognition You Deserve.

QUICKSTART

et Add a completion and readiness badge to your
Linkedin profile, Facebook page, or Twitter account to
validate your professional and technical expertise. With

badges issued and validated by Credly, you can:

¢ Let anyone verify your completion and
achievement by clicking on the badge

* Display your hard work and validate your
expertise

¢ Display each badge's details about specific
skills you developed.

Badges are issued by QuickStart and verified through
Credly.

Find Out More or See List Of Badges

Page 9/9 https://www.quickstart.com/developing-linux-device-drivers-Ifd430.html

https://www.credly.com/org/quickstart/badge/developing-linux-device-drivers-lfd430.1
https://www.credly.com/org/quickstart/badge/developing-linux-device-drivers-lfd430.1
https://www.credly.com/org/quickstart/badge/developing-linux-device-drivers-lfd430.1
https://www.quickstart.com/completion-badges
https://www.credly.com/organizations/quickstart/badges
http://www.tcpdf.org

