
 Document Generated: 02/17/2026

Learning Style: Virtual Classroom

Technology: Linux Foundation

Difficulty: Intermediate

Course Duration: 4 Days

Developing Linux Device Drivers (LFD430)

Page 1/9 https://www.quickstart.com/developing-linux-device-drivers-lfd430.html

About this Course:

The Developing Linux Device Drivers (LFD430) is a comprehensive intermediate-
level training program for professional App Developers and Language Programmers
who want to attain a better understanding of developing Linux System Device
Drivers. The primary objective of this course is to give an overview of major Linux
device drivers and the appropriate Linux methods and APIs for Kernel device
interfaces.

Professionals Linux Developers and C# & C/C++ Developers will learn the art of
developing Linux device drivers and can utilize these learnings to help businesses
maximize productivity. Businesses are always on the lookout for a proficient App
Developers who can optimize and manage Linux system applications seamlessly.
On average, an Embedded Linux Developer earns $107,500 annually and there is a
great demand of professionals having proficiency in Linux device driver
development.

Course Objective:

The core objective of this course is to help professionals gain a better
understanding and sound knowledge of the following key concepts:

Numerous Kinds of Linux Device Drivers
Fundamental of Linux APIs and Kernel Hardware and Software Device
Interface
Best Practices and Module Techniques for Linux
Debugging and Developing Linux Device Drivers
Getting to Know Popular Linux Distributions

Audience:

This course is tailored for the following group of professionals:

Programmers and App Developers
C# & C/C++ Developers
Professional Linux Developers

Prerequisites:

Professionals planning to enroll in the Developing Linux Device Drivers (LFD430)
course must comply with the following prerequisites:

Fundamental Knowledge of Kernel Interfaces including loading and
unloading modules, creating & compiling interfaces, and synchronizing
primitives.
Basic Know-how of Management and Memory Allocation Essentials such as
LFD420 Linux Kernel Development and Internals.

Course Outline:

Page 2/9 https://www.quickstart.com/developing-linux-device-drivers-lfd430.html

Introduction

Objectives
Who You Are
The Linux Foundation
Linux Foundation Training
Linux Distributions
Platforms
Preparing Your System
Using and Downloading a Virtual Machine
Things change in Linux
Documentation and Links
Course Registration

Preliminaries

Procedures
Kernel Versions
Kernel Sources and Use of git
Rolling Your Own Kernel
Hardware
Staging Tree

How to Work in OSS Projects **

Overview on How to Contribute Properly
Stay Close to Mainline for Security and Quality
Study and Understand the Project DNA
Figure Out What Itch You Want to Scratch
Identify Maintainers and Their Work Flows and Methods
Get Early Input and Work in the Open
Contribute Incremental Bits, Not Large Code Dumps
Leave Your Ego at the Door: Don’t Be Thin-Skinned
Be Patient, Develop Long Term Relationships, Be Helpful

Device Drivers

Types of Devices
Mechanism vs. Policy
Avoiding Binary Blobs
Power Management
How Applications Use Device Drivers
Walking Through a System Call Accessing a Device
Error Numbers
printk()
devres: Managed Device Resources
Labs

Modules and Device Drivers

Page 3/9 https://www.quickstart.com/developing-linux-device-drivers-lfd430.html

The module_driver() Macros
Modules and Hot Plug
Labs

Memory Management and Allocation

Virtual and Physical Memory
Memory Zones
Page Tables
kmalloc()
__get_free_pages()
vmalloc()
Slabs and Cache Allocations
Labs

Character Devices

Device Nodes
Major and Minor Numbers
Reserving Major/Minor Numbers
Accessing the Device Node
Registering the Device
udev
dev_printk() and Associates
file_operations Structure
Driver Entry Points
The file and inode Structures
Miscellaneous Character Drivers
Labs

Kernel Features

Components of the Kernel
User-Space vs. Kernel-Space
What are System Calls?
Available System Calls
Scheduling Algorithms and Task Structures
Process Context
Labs

Transferring Between User and Kernel Space

Transferring Between Spaces
put(get)_user() and copy_to(from)_user()
Direct Transfer: Kernel I/O and Memory Mapping
Kernel I/O
Mapping User Pages
Memory Mapping
User-Space Functions for mmap()
Driver Entry Point for mmap()

Page 4/9 https://www.quickstart.com/developing-linux-device-drivers-lfd430.html

Accessing Files from the Kernel
Labs

Interrupts and Exceptions

What are Interrupts and Exceptions?
Exceptions
Asynchronous Interrupts
MSI
Enabling/Disabling Interrupts
What You Cannot Do at Interrupt Time
IRQ Data Structures
Installing an Interrupt Handler
Labs

Timing Measurements

Kinds of Timing Measurements
Jiffies
Getting the Current Time
Clock Sources
Real Time Clock
Programmable Interval Timer
Time Stamp Counter
HPET
Going Tickless
Labs

Kernel Timers

Inserting Delays
What are Kernel Timers?
Low Resolution Timer Functions
Low Resolution Timer Implementation
High Resolution Timers
Using High Resolution Timers
Labs

ioctls

What are ioctls?
Driver Entry point for ioctls
Defining ioctls
Labs

Unified Device Model and sysfs

Unified Device Model
Basic Structures
Real Devices

Page 5/9 https://www.quickstart.com/developing-linux-device-drivers-lfd430.html

sysfs
kset and kobject examples
Labs

Firmware

What is Firmware?
Loading Firmware
Labs

Sleeping and Wait Queues

What are Wait Queues?
Going to Sleep and Waking Up
Going to Sleep Details
Exclusive Sleeping
Waking Up Details
Polling
Labs

Interrupt Handling: Deferrable Functions and User Drivers

Top and Bottom Halves
Softirqs
Tasklets
Work Queues
New Work Queue API
Creating Kernel Threads
Threaded Interrupt Handlers
Interrupt Handling in User-Space
Labs

Hardware I/O

Buses and Ports
Memory Barriers
Registering I/O Ports
Reading and Writing Data from I/O Registers
Allocating and Mapping I/O Memory
Accessing I/O Memory
Access by User – ioperm(), iopl(), /dev/port
Labs

PCI

What is PCI?
PCI Device Drivers
Locating PCI Devices
Accessing Configuration Space
Accessing I/O and Memory Spaces

Page 6/9 https://www.quickstart.com/developing-linux-device-drivers-lfd430.html

PCI Express
Labs

Platform Drivers**

What are Platform Drivers?
Main Data Structures
Registering Platform Devices
An Example
Hardcoded Platform Data
The New Way: Device Trees
Labs

Direct Memory Access (DMA)

What is DMA?
DMA Directly to User
DMA and Interrupts
DMA Memory Constraints
DMA Masks
DMA API
DMA Pools
Scatter/Gather Mappings
Labs

Network Drivers I: Basics

Network Layers and Data Encapsulation
Datalink Layer
Network Device Drivers
Loading/Unloading
Opening and Closing
Labs

Network Drivers II: Data Structures

net_device Structure
net_device_ops Structure
sk_buff Structure
Socket Buffer Functions
netdev_printk() and Associates
Labs

Network Drivers III: Transmission and Reception

Transmitting Data and Timeouts
Receiving Data
Statistics
Labs

Page 7/9 https://www.quickstart.com/developing-linux-device-drivers-lfd430.html

Network Drivers IV: Selected Topics

Multicasting **
Changes in Link State
ioctls
NAPI and Interrupt Mitigation
NAPI Details
TSO and TOE
MII and ethtool **

USB Drivers

What is USB?
USB Topology
Terminology
Endpoints
Descriptors
USB Device Classes
USB Support in Linux
Registering USB Device Drivers
Moving Data
Example of a USB Driver
Labs

Power Management

Power Management
ACPI and APM
System Power States
Callback Functions
Labs

Block Drivers

What are Block Drivers?
Buffering
Registering a Block Driver
gendisk Structure
Request Handling
Labs

Closing and Evaluation Survey

Evaluation Survey

** These sections may be considered in part or in whole as optional. They
contain either background reference material, specialized topics, or advanced
subjects. The instructor may choose to cover or not cover them depending on
classroom experience and time constraints.

Page 8/9 https://www.quickstart.com/developing-linux-device-drivers-lfd430.html

Credly Badge:

 Display your Completion Badge And Get The
Recognition You Deserve.

Add a completion and readiness badge to your
Linkedin profile, Facebook page, or Twitter account to
validate your professional and technical expertise. With
badges issued and validated by Credly, you can:

Let anyone verify your completion and
achievement by clicking on the badge
Display your hard work and validate your
expertise
Display each badge's details about specific
skills you developed.

Badges are issued by QuickStart and verified through
Credly.

 Find Out More or See List Of Badges

Powered by TCPDF (www.tcpdf.org)

Page 9/9 https://www.quickstart.com/developing-linux-device-drivers-lfd430.html

https://www.credly.com/org/quickstart/badge/developing-linux-device-drivers-lfd430.1
https://www.credly.com/org/quickstart/badge/developing-linux-device-drivers-lfd430.1
https://www.credly.com/org/quickstart/badge/developing-linux-device-drivers-lfd430.1
https://www.quickstart.com/completion-badges
https://www.credly.com/organizations/quickstart/badges
http://www.tcpdf.org

