
 Document Generated: 01/07/2026

Learning Style: Virtual Classroom

Technology:

Difficulty: Advanced

Course Duration: 4 Days

Security and the Linux Kernel (LFD441)

Page 1/10 https://www.quickstart.com/linux-kernel-debugging-and-security-lfd441.html

Intro to Course:

To learn the procedure and basic skeleton of Linux Kernel, the course is designed
to focus on the very crucial tools suitable for debugging and keep an observatory
eye the Kernel and how security features are deployed and commanded.

To the experienced programmers, this course offers strong comprehension of Linux
Kernel, technical ideas of debugging and its tools. During 4 days course session,
you will learn aggressive practical exercises and designed demonstrations to show
very crucial tools to design and debug Linux Kernel Code.

An Embedded Linux Developer usually gets a pay of US $ 77,166 per annum on an
average.

Who can enroll?

App Developers
C/C ++, C# Developers
Linux Developers

Main Requirement!

Before you enrolled in this course, you must:

Expert in C programming language.
Have knowledge of basic Linux (UNIX) tools such as Is, Grep and Tar.
Hand on any available text editors such as Emacs, Vi etc.
An experience of important Linux distribution will be an added advantage,
but not a requirement.
Have an expertise equal to have taken LFD420, the Kernel Internals course.

Course Outline:

Introduction

Objectives
Who You Are
The Linux Foundation{
Copyright and No Confidential Information
The Linux Foundation{ Training
Certification Programs and Digital Badging
Linux Distributions
Platforms
Things Change in Linux and Open Source Projects

Preliminaries

Kernel Versions
Kernel Sources and Use of git

Page 2/10 https://www.quickstart.com/linux-kernel-debugging-and-security-lfd441.html

Lab environment

Virtual Machine
Why proxmox {?
Our Lab Environment
Labs

How to Work in OSS Projects **

Overview on How to Contribute Properly
Know Where the Code is Coming From: DCO and CLA
Stay Close to Mainline for Security and Quality
Study and Understand the Project DNA
Figure Out What Itch You Want to Scratch
Identify Maintainers and Their Work Flows and Methods
Get Early Input and Work in the Open
Contribute Incremental Bits, Not Large Code Dumps
Leave Your Ego at the Door: Don't Be Thin-Skinned
Be Patient, Develop Long Term Relationships, Be Helpful

Reducing Attack Surfaces

Why Security?
Types of Security
Vulnerabilities
Layers of Protection
Software Exploits
Labs

Kernel Features

Components of the Kernel
User-Space vs. Kernel-Space
What are System Calls?
Available System Calls
Scheduling Algorithms and Task Structures
Process Context
Labs

Kernel Deprecated Interfaces

Why Deprecated
__deprecated
BUG() and BUG_ON()
Computed Sizes for kmalloc()
simple_strtol() Family of Routines
strcpy(), strncpy(), strlcpy()
printk() %p Format Specifier
Variable Length Arrays
Switch Case Fall-Through

Page 3/10 https://www.quickstart.com/linux-kernel-debugging-and-security-lfd441.html

Zero-Length and One-Element Arrays in Structs

Address Space Layout Randomization (ASLR)

Why ASLR?
How to Use ASLR
Disabling ASLR for Specific Programs
Kernel Configuration
Kernel Address Space Layout Randomization (KASLR)
How KASLR Works
Enabling KASLR
Labs

Kernel Structure Layout Randomization

Benefits
How Structure Randomization Works
Structure Initialization
Opt-in vs Opt-out
Partial Randomization
Enabling Structure Randomization
Building Out-of-tree Modules with Structure Randomization

Introduction to Linux Kernel Security

Linux Kernel Security Basics
Discretionary Access Control (DAC)
POSIX ACLs
POSIX Capabilities
Namespaces
Linux Security Modules (LSM)
Netfilter
Cryptographic Methods
The Kernel Self Protection Project

CGroups

Introduction to CGroups
Overview
Components of CGroup
cgroup initialization
cgroup Activation
cgroups Parameters
Testing cgroups
systemd and cgroups
Labs

eBPF

BPF

Page 4/10 https://www.quickstart.com/linux-kernel-debugging-and-security-lfd441.html

eBPF
Installation
bcc Tools
bpftrace
Labs

Seccomp

What is seccomp
The seccomp Interface
seccomp Strict Mode
seccomp Filter Mode
Labs

Secure Boot

Why Secure Boot?
Secure Boot x86
Embedded Systems Secure Boot
Labs

Module Signing

What is Module Signing?
Basics of Signatures
Module Signing Keys
Enabling Module Signature Verification
How It Works
Signing Modules
Labs

Integrity Measurement Architecture (IMA)

Why IMA?
Conceptual Operations
Modes of Operation
Collect Mode textit {(Collect and Store)
Logging Mode textit {(Appraise and Audit)
Enforcing Mode textit {(Appraise and Protect)
Extended Verification Module (EVM)
Labs

DM-Verity

What is dm-verity?
How dm-verity Works
Enabling dm-verity
Setting up dm-verity
Using dm-verity
Signing with dm-verity

Page 5/10 https://www.quickstart.com/linux-kernel-debugging-and-security-lfd441.html

Booting with dm-verity
Labs

Encrypted Storage

Why Encrypted Storage?
Data Encryption Solutions
Survey of Storage Encryption Options
Block Encryption
Block Encryption Use
Filesystem Encryption
Filesystem Encryption Use
Layered Filesystem Encryption
Layered Filesystem Encryption Use
Labs

Linux Security Modules (LSM)

What are Linux Security Modules?
LSM Basics
LSM Choices
How LSM Works
An LSM Example: Yama
Labs

SELinux

SELinux
SELinux Overview
SELinux Modes
SELinux Policies
Context Utilities
SELinux and Standard Command Line Tools
SELinux Context Inheritance and Preservation**
restorecon**
semanage fcontext**
Using SELinux Booleans**
getsebool and setsebool**
Troubleshooting Tools
Labs

AppArmor

What is AppArmor?
Checking Status
Modes and Profiles
Profiles
Utilities

Yama (LSM)

Page 6/10 https://www.quickstart.com/linux-kernel-debugging-and-security-lfd441.html

Why Yama?
Configuring Yama
How Yama Works
Labs

LoadPin (LSM)

Why LoadPin?
Enabling LoadPin
Using LoadPin
How LoadPin Works

Lockdown

Why Lockdown?
Lockdown Modes
What Things are Locked Down?
How It Works
A Few Notes
Labs

Safesetid

Why Safesetid?
Configuring Safesetid
How Safesetid Works
Labs

Netfilter

What is netfilter?
Netfilter Hooks
Netfilter Implementation
Hooking into Netfilter
Iptables
nftables
Labs

Netlink Sockets**

What are netlink Sockets?
Opening a netlink Socket
netlink Messages
Labs

Closing and Evaluation Survey

Evaluation Survey

Kernel Architecture I

Page 7/10 https://www.quickstart.com/linux-kernel-debugging-and-security-lfd441.html

UNIX and Linux **
Monolithic and Micro Kernels
Object-Oriented Methods
Main Kernel Components
User-Space and Kernel-Space

Kernel Programming Preview

Task Structure
Memory Allocation
Transferring Data between User and Kernel Spaces
Object-Oriented Inheritance - Sort Of
Linked Lists
Jiffies
Labs

Modules

What are Modules?
A Trivial Example
Compiling Modules
Modules vs Built-in
Module Utilities
Automatic Module Loading
Module Usage Count
Module Licensing
Exporting Symbols
Resolving Symbols **
Labs

Kernel Architecture II

Processes, Threads, and Tasks
Kernel Preemption
Real Time Preemption Patch
Labs

Kernel Configuration and Compilation

Installation and Layout of the Kernel Source
Kernel Browsers
Kernel Configuration Files
Kernel Building and Makefiles
initrd and initramfs
Labs

Kernel Style and General Considerations

Coding Style
Using Generic Kernel Routines and Methods

Page 8/10 https://www.quickstart.com/linux-kernel-debugging-and-security-lfd441.html

Making a Kernel Patch
sparse
Using likely() and unlikely()
Writing Portable Code, CPU, 32/64-bit, Endianness
Writing for SMP
Writing for High Memory Systems
Power Management
Keeping Security in Mind
Labs

Race Conditions and Synchronization Methods

Concurrency and Synchronization Methods
Atomic Operations
Bit Operations
Spinlocks
Seqlocks
Disabling Preemption
Mutexes
Semaphores
Completion Functions
Read-Copy-Update (RCU)
Reference Counts
Labs

Memory Addressing

Virtual Memory Management
Systems With and Without MMU and the TLB
Memory Addresses
High and Low Memory
Memory Zones
Special Device Nodes
NUMA
Paging
Page Tables
page structure
Labs

Memory Allocation

Requesting and Releasing Pages
Buddy System
Slabs and Cache Allocations
Memory Pools
kmalloc()
vmalloc()
Early Allocations and bootmem()
Memory Defragmentation
Labs

Page 9/10 https://www.quickstart.com/linux-kernel-debugging-and-security-lfd441.html

Credly Badge:

 Display your Completion Badge And Get The
Recognition You Deserve.

Add a completion and readiness badge to your
Linkedin profile, Facebook page, or Twitter account to
validate your professional and technical expertise. With
badges issued and validated by Credly, you can:

Let anyone verify your completion and
achievement by clicking on the badge
Display your hard work and validate your
expertise
Display each badge's details about specific
skills you developed.

Badges are issued by QuickStart and verified through
Credly.

 Find Out More or See List Of Badges

Powered by TCPDF (www.tcpdf.org)

Page 10/10 https://www.quickstart.com/linux-kernel-debugging-and-security-lfd441.html

https://www.credly.com/org/quickstart/badge/linux-kernel-debugging-and-security-lfd440.1
https://www.credly.com/org/quickstart/badge/linux-kernel-debugging-and-security-lfd440.1
https://www.credly.com/org/quickstart/badge/linux-kernel-debugging-and-security-lfd440.1
https://www.quickstart.com/completion-badges
https://www.credly.com/organizations/quickstart/badges
http://www.tcpdf.org

