Quant Trading using Machine Learning

This course takes a completely practical approach to applying Machine Learning techniques to Quant Trading

Self-Paced

Learning Style

Intermediate

Difficulty

10 Hours

Course Duration

Course Info

Download PDF

Certificate

See Sample

About Individual Course:
  • Individual course plan gives you access to this course
On Sale!
Now Only $10.00 Regular Price $49.00
Now Only $10.00 Regular Price $49.00
/ Each
When you subscribe, you get:
Learn Subscription plan gives you access to this course and over 820 other popular courses
On Sale!
Now Only $39.99 Regular Price $44.99
Now Only $39.99 Regular Price $44.99
/ Month
Team
Pricing
  • Buy 5-9 Enrollments And Save 68% ($12.74 monthly.)
  • Buy 10-19 Enrollments And Save 72% ($11.24 monthly.)
  • Buy 20-above Enrollments And Save 78% ($8.99 monthly.)
This course takes a completely practical approach to applying Machine Learning techniques to Quant Trading

Course Information

Taught by a Stanford-educated, ex-Googler and an IIT, IIM - educated ex-Flipkart lead analyst. This team has decades of practical experience in quant trading, analytics and e-commerce. 

This course takes a completely practical approach to applying Machine Learning techniques to Quant Trading

Let’s parse that.

Completely Practical: This course has just enough theory to get you started with both Quant Trading and Machine Learning. The focus is on practically applying ML techniques to develop sophisticated Quant Trading models. From setting up your own historical price database in MySQL to writing hundreds of lines of Python code, the focus is on doing from the get go.

Machine Learning Techniques: We'll cover a variety of machine learning techniques, from K-Nearest Neighbors and Decision Trees to pretty advanced techniques like Random Forests and Gradient Boosted Classifiers. But, in practice Machine Learning is not just about the algorithms. Feature Engineering, Parameter Tuning, Avoiding overfitting; these are all a part and parcel of developing Machine Learning applications and we do it all in this course. 

Quant Trading: Quant Trading is a perfect example of an area where the use of Machine Learning leads to a step change in the quality of the models used. Traditional models often depend on Excel and building sophisticated models requires a huge amount of manual effort and domain knowledge. Machine Learning libraries available today allow you to build highly sophisticated models that give you much better performance with much less effort.

Course Objective:

Quant Trading : Financial Markets, Stocks, Indices, Futures, Return, Risk, Sharpe Ratio, Momentum Investing, Mean Reversion, Developing trading strategies using Excel, Backtesting

Machine Learning: Decision Trees, Ensemble Learning, Random Forests, Gradient Boosted Classifiers, Nearest Neighbors, Feature engineering, Overfitting, Parameter Tuning

MySQLSet up a historical price database in MySQL using Python. 

Python Libraries : Pandas, Scikit-Learn, XGBoost, Hyperopt

Audience:

  • Quant traders who have not used Machine learning techniques before to develop trading strategies
  • Analytics professionals, modelers, big data professionals who want to get hands-on experience with Machine Learning
  • Anyone who is interested in Machine Learning and wants to learn through a practical, project-based approach

Prerequisite:

Prerequisites: Working knowledge of Python is necessary if you want to run the source code that is provided. Basic knowledge of machine learning, especially ML classification techniques, would be helpful but it's not mandatory.

Outline

More Information

More Information
Subjects App Development
Lab Access No
Technology Programming Language
Learning Style Self-Paced Learning
Difficulty Intermediate
Course Duration 10 Hours
Language English
VPA Discount VPA Discount

Reviews

Write Your Own Review
Only registered users can write reviews. Please Sign in or create an account

Contact A Learning Consultant


click here