Azure Data Engineer Certification: Data Engineering on Microsoft Azure (DP-203T00)
- Jan 08, 2024 - Jan 11, 20244 Days - Live Online - PST08:00 AM - 04:00 PM PSTGuaranteed To Run
- Feb 20, 2024 - Feb 23, 20244 Days - Live Online - PST08:00 AM - 04:00 PM PSTGuaranteed To Run
- Mar 18, 2024 - Mar 21, 20244 Days - Live Online - PST08:00 AM - 04:00 PM PSTGuaranteed To Run
More Information:
- Learning Style: Virtual
- Provider: Microsoft
- Difficulty: Intermediate
- Course Duration: 4 Days
- Course Info: Download PDF
- Certificate: See Sample
Need Training for 5 or More People?
Customized to your team's need:
- Annual Subscriptions
- Private Training
- Flexible Pricing
- Enterprise LMS
- Dedicated Customer Success Manager
Course Information
If you enroll in this course at the listed price, you receive a Free Official Exam Voucher for the DP-203 Exam. This course does not include Exam Voucher if enrolled within the Master Subscription, however, you can request to purchase the Official Exam Voucher separately.
About this Course:
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azure data platform technologies. Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics.
Course Objectives:
- Explore compute and storage options for data engineering workloads in Azure
- Design and Implement the serving layer
- Understand data engineering considerations
Audience:
The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure.
Prerequisites:
Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.
Specifically completing:
- AZ-900 - Azure Fundamentals
- DP-900 - Microsoft Azure Data Fundamentals
Outline
Credly Badge
Reviews
-
Good class and great instructor.This class is knowledge intensive. We learned a lot from this class.
Posted on
-
Data Engineering on Microsoft AzureSatisfied with the class.
Posted on